
"AD-RI3e 597 XPLAIN: R SYSTEM FOR CREATING AND EXPLAINING EXPERT 1/1
CONSULTING PROGRAMS..(U) UNIVERSITY OF SOUTHERN
CALIFORNIA MARINA DEL REY INFORMATION S. Wd R SWARTOUT

UNCLASSIFIED JUL S1 ISI/RS-83-4 PHS-i-PM-LM-83374-8i F/G 9/2 N

Emhhhhhmmmhml

..

.7

111 11-8 L
M2

42.-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

79 -

IS] Reprini Series

ADA 3 059"

(University
Of Southern

Cahfornia

William R. Swartout

........... XPLAIN: A System for

Creating and Explaining
Expert Consulting Programs

DTIC
BCL. JUL22 1983

LaJ E

INFORMATION
SCIENCES / / " S11

INSTITUTE 4076 Adniralty l'ai/!arina del Rci/Ca1'..fcrnia (,02W - ,

kw pubt.c relam- cmd sale, ia
,,, ,,,. .. 8i3 07 22 003

'dlfrbt"olauljmt"de"

Unclassified
SECURITY CLASSIFICATION OF TMIS PAGE (Whlen Data Entered) ___________________

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING FORM
IREPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

XPLAIN: A System for Creating and Explaining Research Report

Expert Consulting Programs 6. PERFORMING ORG. REPORT NUMBER

7. AUTNOR(e) S. CONTRACT OR GRANT NUMUER(s)

William R. Swartout 14-PO1-LM-03374-01

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

USC/Information Sciences Institute AREA A WORK UNIT NUMBERS

4676 Admiralty Way
Marina del Rey, CA 90291 WE_______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

National Institutes of Health July 1983
9000 Rockville Pike IS. NUMBER OF PAGES

Bethesda, MD 20205 58_____________

14. MONITORING AGENCY NAME &ADORESS(ti dilfferent from Conitrolling Offie) IS. SECURITY CLASS. (of this report)

Unclassified
IBa. DECL ASSI FIC ATION/ DOWNGRADING

SCH EDULE

IS. DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release; distribution is unlimited.

* 17. DISTRIBUTION STATEMENT (of the abstract entered In, Block 20, it different from, Report)

If. SUPPLEMENTARY NOTES

This report is a reprint of an article that will appear in Artificial Intelligence, a journal published by
North-Holland, in late 1983 or early 1984.

19. KEY WORDS (Continue on reverse aide it necessary and Identify by block rumber)

automatic programming, expert systems, explanation

20. ABSTRACT (Contimue on reverse side It necessary and Identify by block mmriber)

(OVER)

D IFJARM 1473 EDITION OF I NOV 65 IS OBSOLETE Ucasfe
JAN ~S/N 0102-014- 6601 Ucasfe

SECURITY CLASSIFICATION OF THIS PAGE (Whont Data BaRed)0

Unclassified
SECuRITY CLASSIFICATION OF THIS PAGE(e e Date Enteme),

20. ABSTRACT (continued)

Traditional methods for explaining programs provide explanations by converting the code of the
program or traces of its execution to English. While such methods can sometimes adequately explain
program behavior, they typically cannot provide justifications for that behavior. That is, such systems
cannot tell why what the system is doing is a reasonable thing to be doing. The problem is that the
knowledge required to provide these justifications was used to produce the program but is itself not
recorded as part of the code, and hence is unavailable.

The XPLAIN system uses an automatic programmer to generate a consulting program by refinement
from abstract goals. The automatic programmer uses a domain model, consisting of descriptive facts
about the application domain, and a set of domain principles which prescribe behavior and drive the
refinement process forward. By examining the refinement structure created by the automatic
programmer, XPLAIN provides justifications of the code. XPLAIN has been used to re-implement
major portions of a Digitalis Therapy Advisor and provides superior explanations of its behavior.

.%

Unclasified
SECURITY CLASSIFICATION OP THIS pAOGa(OPo DaIa Et*eod)

* ~ ~ ~ ~ ~ - -- 1~*-~- - *-

IS! Reprint Series
ISIIRS-83-4

JuY 1983

of Southern I:.
Caliornia

William R. Swartoutj

-------- XPLAIN: A System for

Expert Consulting Programs
Ac~esionFCetn ndEpann

77

D or

INFORMATION
SCIENCES 2131822* 1511

INSTITUTE4676 Admiralty Way/Marina del Rey/Calfornia 90291-6695

This research wan perfonme wh~ile the author wan at the Laboratory for Computer Science of the Masachusetts institute of Technology and
was suppofh (in part) by the National Institute& of Health Grant No. 11301 LM 03374-01 fram the National Library of Medicine.

J
rr----r.-- wr

- C. -. * -.-.- :::.. .-,

ISI Reprint Series

This report is one in a series of reprints of articles written by ISI research

staff and published in professional journals and conference proceedings. For

a complete list of ISI reports, write to

Document Distribution
USC/Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90291
USA

Contents

1. Introduction .. 1
1.1 Major Points... 2
1.2 Outline ... 4

2. Digitalis Therapy and the Digitalis Advisor 4
*.2.1 The Digitalis Therapy Advisor Teshd....................................... 5

3. Kinds of Questions ... 6

4. Previous Approaches to Explanation.. 7

5. Providing Justifications ... 10
7% ~5.1 The Refinement Structure... 12

5.2 The Domain Model .. 13
5.3 Domain Principles .. 1
5.4 The Domain Rationale: More Detail.. 16
5.5 Intertwining Specification and Implementation 18
5.6 Integrating Program Fragments 19
5.7 Assessing Toxicity.. 22

6. Generating Explanations .. 25
6.1 XLMS Notation and the Phrase Generator..................................... 25
6.2 The Answer Generators: Determining What to Say............................... 28

7. A Discussion of the Automatic Programming Approach to Explanation 38
7.1 Does Automatic Programming Affect the Performance Program?"................... 38

*7.2 Is This Approach to Explanation Compatible with Others? 40
*7.3 Is Automatic Programming Too Hard?'....................................... 40

7.4 Is a Top-down Approach Really Necessaryl 41
7.5 Limitations and Extensions of the XPLAIN System............................... 41

8. A Summary of Major Points .. 45

9. Acknowledgments... 45

References.. 45

XPLAIN: A System for
Creating and Explaining

Expert Consulting Systems

Abstract
* Traditional methods for explaining programs provide explanations by converting the code of

the program or traces of its execution to English. While such methods can sometimes
adequately explain program behavior, they typically cannot provide justifications for that
behavior. That is, such systems cannot tell why what the system is doing is a reasonable
thing to be doing. The problem is that the knowledge required to provide these justifications
was used to produce the program but is itself not recorded as part of the code, and hence is
unavailable.

The XPLAIN system uses an automatic programmer to generate a consulting program by
refinement from abstract goals. The automatic programmer uses a domain model,

* consisting of descriptive facts about the application domain, and a set of domain principles
which prescribe behavior and drive the refinement process forward. By examining the-
ref inement structure created by the automatic programmer, XPLAIN provides justifications

* of the code. XPLAIN has been used to re-implement major portions of a Digitalis Therapy
Advisor and provides superior explanations of its behavior.

1. Introduction

Computers can be inscrutable. To the layman, the computer is often regarded as
either an omniscient, fathomless device or a convenient scapegoat. In part, this situation
has arisen because computer systems are designed with little provision for self -description.
That is, programs cannot explain or justify what they do. Typically, the designer of a data
processing system can rely on a staff of computer support personnel to deal with problems
and questions as they occur. However, even in relatively simple areas such as accounting
and billing this approach has not been an overwhelming success, and It becomes less
appropriate as we become more ambitious and attempt to use the computer to solve more
sophisticated problems in an environment where support personnel may not be available to
answer inquiries.

1. This report is a reprint of an article that will appear in Artificial Intelligence, a journal published by
North-Holland. in late 1983 or early 1984.

,2-

Trust in a system is developed not only by the quality of its results, but also by clear
description of how they were derived. This can be especially true when first working with an
expert system. Expert systems are usually based on heuristics. While heuristics may
provide good performance for most cases, there may be unusual cases where they produce
erroneous results, or where the rationale for using them is faulty. If a user is suspicious of

* the advice he receives, he should be able to ask for a description of the methods employed
* and the reasons for employing them. In addition, the scope of expert systems, like that of

human experts, is often quite narrow. An explanation facility can help a user discover when
a system is being pushed beyond the bounds of its expertise.

2 As a further illustration of the need for explanation consider expert medical
consultant programs.2 In designing a consultant program, we must consider what sorts of

- capabilities we are trying to provide for the physician user. If we consider the interaction
* between a physician and a human consultant, we realize that it is not just a simple one-way
* exchange where the physician provides data and the consultant provides an answer in the
- form of a prescription or diagnosis. Rather, there is typically a lively dialog between the two.

The physician may question whether some factor was considered or what effect a particular
* finding had on the final outcome and the expert is expected to be able to justify his answer

* - and show that sound medical principles and knowledge were used to obtain it. Viewed in
* this light, we realize that a computer program which only collects data and provides a final
* answer will not be found acceptable by most physicians. In addition to providing diagnoses

or prescriptions, a consultant program must be able to explain what It is doing and justify
why it is doing it.

Researchers have recognized this, and many proposals for new expert systems
have at least mentioned the need for explanation. Some systems have actually provided an
explanatory facility. Yet existing approaches to explanation fail in some important ways.

* 1.1 Major Points

-. In par~lcular, we will argue in this paper that current explanation methodologies are
limited to dt ribing what they did (or the reasoning path they followed to reach a

* conclusion), but they are incapable of justifying their actions (or reasoning paths). By
* justifications, we mean explanations that tell why an expert system's actions are reasonable

in terms of principles of the domain-the reasoning behind the system. The knowledge

2. Some medical consultant programs include: MYCIN-a program that aids physicians with
* antimicrobial therapy (Shortliffe76), INTERNIST-a program that makes diagnoses in internal

medicine [Pople77] and PIP-a program that makes diagnoses primarily in the area of renal disease
[Pauker76].

-PAL,

-3.

required to provide justifications is not represented in typical expert systems because the
program can perform correctly without it. Just as one can follow a recipe and bake a cake
without ever knowing why the flour or baking powder is there, so too an expert system can
deliver impressive performance without any representation of the reasoning underlying its
rules or methods.

The reasoning that system designers go through during the creation of an expert
system is precisely what is required to produce justifications, yet it is not likely to appear in
the expert system itself. This paper presents one approach for capturing that reasoning.
The basic idea is to use an automatic programmer to create the expert system. As it refines
the performance program from abstract goals, the programmer leaves behind a trace of its
reasoning, which can then be used by explanatory routines to justify the actions of the
expert system.

In creating the expert system, the automatic programmer draws on two bodies of
knowledge. The first, called the domain model contains the descriptive facts of the domain,
such as causal relationships and classification hierarchies-the textbook knowledge of the
domain. The second body of knowledge, the domain principles contains the methods and
heuristics of the domain-the "how to" knowledge. The automatic programmer integrates
these prescriptive principles together with the descriptive facts of the domain to produce the
performance program. This process of integration is recorded and used as the justification
of the expert system's behavior.

This explicit separation of prescriptive and descriptive knowieige is not made in
most expert systems and has some important benefits in addition to facilitating justification.
In systems where descriptive and prescriptive knowledge is implicitly intermixed, methods or
rules must often be stated at an overly specific level of abstraction. This reduces the quality
of the explanations the system can deliver. As we will see (in section 6) separating these

different kinds of knowledge allows methods to be stated at a higher level of abstraction
resulting in superior explanations. The other primary benefit is to modifiability: the domain
model and domain principles can be modified (or used) independently. For example, most
of the domain principles which were written to anticipate digitalis sensitivities can in fact be
used to anticipate sensitivity to any drug. Only the domain model would have to change to

allow these principles to be used in a new application domain. On the other hand, much of
the domain model that was developed for correcting for digitalis sensitivities was also used
in detecting digitalis toxicity. In expert systems that intermix descriptive and prescriptive
knowledge, modification of methods can be quite difficult. The separation of the two eases
that process.

'I.

-4.

1.2 Outline

The next section will describe the Digitalis Therapy Advisor. the program we haw2
chosen as a testbed for our ideas about explanation, and some of the medical aspects of

*digitalis therapy. Section 3 discusses some of the kinds of questions that require
explanation. Section 4 outlines some of the problems with previous approaches to

* explanation. Section 5 details how the automatic programmer works and section 6 shows
how explanations are produced. Section 7 further discusses the problems and promise of

* this approach.

While we have concentrated on the problem of providing explanations to medical
personnel, we do not feel that the need for explanation is limited to medicine nor that the
techniques we have developed for explanation and justification are limited to medical
applications. Medical programs provide a good testbed for the general problem of
explaining a consulting program to the audience it is intended to serve.

- 2. Digitalis Therapy and the Digitalis Advisor

The digitalis glycosides, are a group of drugs that were originally derived from the
* foxglove, a common flowering plant. Their principal effect is to strengthen and stabilize the

heartbeat. In current practice, digitalis is prescribed chiefly to patients who show signs of
congestive heart failure (CHF) or conduction disturbances of the heart. Congestive heart
failure refers to the inability of the heart to provide the body with an adequate blood flow.

* This condition causes fluid to accumulate in the lungs and outer extremities and it is this
- aspect that gives rise to the term "congestive". Digitalis is useful in treating this condition

because it increases the contractility of the heart, making it a more effective pump. A
conduction disturbance appears as an arrhythmia, which is an unsteady or abnormally
paced heartbeat. Digitalis tends to slow the conduction of electrical impulses through the

* conduction system of the heart, and thus steady certain types of arrhythmias. Due to the
positive effect that digitalis has on the heart, it is one of the most commonly prescribed
drugs in the United States.

Like many other drugs, digitalis can also be a poison if too much is administered.
* For a variety of reasons, including a small difference between a therapeutic and toxic dose,
* subtle signs of toxicity, and high interpatient variability, digitalis is difficult to administer.

The physician must deal with the possibility that his patient may be more sensitive to then1
drug (for whatever reason) than the average patient. If a physician knows those factors that
make a patient more sensitive he can reduce the likelihood of overdosing (or underdosing)
the patient by adjusting the dose depending on whether he observes the sensitizing factors
or not.

/

-5.

One possible toxic effect of digitalis is to increase the automaticity of the heart. In
the normal heart, there is a place in the left atrium called the sino-atrial (SA) node, which
sets the pace for the heart. Under certain circumstances, other parts of the heart can take
over the pace-setting function. Sometimes this can be life-saving if, for example, the SA
node is damaged. But at other times it can be life-threatening, since several pace-makers
operating simultaneously tend to increase the likelihood of setting up a dangerous
arrhythmia, such as ventricular fibrillation. When we say that digitalis increases the
automaticity of the heart, we mean that digitalis increases the tendency of other parts of the
heart to take over the pace-setting function from the SA node.

Over the years, a number of factors have been identified that also increase the
automaticity of the heart. These include: a low level of serum potassium (hypokalemia), a
high level of serum calcium (hypercalcemia), damage to the heart muscle (cardiomyopathy),
and a recent myocardial infarction. When these exist in conjunction with digitalis
administration, the automaticity can be increased substantially. We will concentrate on the
first two factors in this paper.

2.1 The Digitalis Therapy Advisor Testbed

A few years ago, a Digitalis Therapy Advisor was developed at MIT by Pauker,
Silverman, and Gorry [Silverman75, Gorry78]. This program was later revised and given a
preliminary explanatory capability [Swartout77b]. The limitations of these explanations (and
of those produced by similar techniques) will be discussed below. This program differed
from earlier digitalis advisors [Peck73, Jelliffe7O, Jelliffe72, Sheiner72] in two important
respects. First, when formulating dosage schedules, it anticipated possible toxicity by
taking into account the factors that increased digitalis sensitivity and reduced the dose
when those factors were present. Second, the program made assessments of the toxic and
therapeutic effects which actually occurred in the patient after receiving digitalis to
formulate subsequent dosage recommendations. This program worked in an interactive
fashion. The program would ask the physician for data about the patient and produce
recommendations after those data were entered. When the dose of digitalis was being
adjusted, the physician was asked to consult with the program again to assess the patient's
response. This program was used as a testbed for this work in explanation and justification.

In the remainder of the paper, this program will be referred to as the "old Digitalis Advisor".

- F9 o o . .

%"-

-- 3. Kinds of Questions

In the spring of 1979, a series of informal trials was conducted in an attempt to
discover what kinds of questions occurred to medical personnel as they ran the Digitalis
Advisor. In this trial, medical students and iellows were asked to run the program and ask
questions (verbally) as they occurred to them. I attempted to answer these questions. The
interactions were tape recorded and later transcribed.

No formal analysis of the data was attempted, but examination of the transcripts did
suggest three major types of questions that might arise while running a consulting program.
These were:

1. Questions about the methods the program employed:

Subject: 'How do you calculate your body store goal? That's a little lower than I
anticipated."

2. Justifications of the program's actions:

Subject: (perusing recommendations) "Why do we want to make a temporary
reduction?

Experimenter: "We're anticipating surgery coming up and surgery, even
non-cardiac surgery, can cause increased sensitivity to digitalis, so it wants to
temporarily reduce the level of digitalis."

. 3. Questions involving confusion about the meaning of questions the system asked:

IS THE RENAL FUNCTION STABLE?
THE POSSIBILITIES ARE:

1. STABLE
2. UNSTABLE II

ENTER SINGLE VALUE ====>

Subject: "Now this question...l'm not really sure...'renal function stable' does it
mean stable abnormally or...because I mean, the patient's renal function is not
normal but it's stable at the present time."

Experimenter: "That's what it means"

I

a.

-- - -*-'-. ----- ~

.7-

The first type of question can be answered by any system that can produce an
English description of the code it executes. This sort of question could be answered by the

* explanation routines of the old Digitalis Advisor and by the XPLAIN system presented here.
Answering the second type of question requires not only an ability to translate code to
English but also requires that the system represent and be able to express the medical
knowledge upon which that code is based. This medical knowledge may not be necessary
for the successful execution of code, but is necessary to be able to justify it. The third type
of question requires a system that can model potential differences between a user's

* understanding of a term and the system's and generate an explanation which reconciles the
* two. The XPLAIN system does not address this type of question.

4. Previous Approaches to Explanation

A number of different approaches have been taken to attempt to provide programs
with an explanatory capability. The major approaches are 1) using previously prepared text
to provide explanations and 2) producing explanations directly from the computer code and
traces of its execution.

The simplest way to get a computer to answer questions about what it is doing is to
anticipate the questions and store the answers as English text. Only the text that has been
stored can be displayed. This is called canned text, and explanations produced by
displaying canned text are called canned explanations. The simplest sorts of canned
explanations are error messages. For example, a medical program designed to treat adults
might print the following message if someone tried to use it to treat an infant:

THE PATIENT IS TOO YOUNG TO BE TREATED BY THIS PROGRAM.

It is relatively easy to get a small program to provide English explanations of its activity using

Fig. 1. How the Old Digitalis Advisor Checks Hypercalcemla

TO CHECK SENSITIVITY DUE TO CALCIUM I DO THE FOLLOWING STEPS:

* 1. I DO ONE OF THE FOLLOWING:

1.1 IF EITHER THE LEVEL OF SERUM CALCIUM IS GREATER THAN 10 OR

INTRAVENOUS CALCIUM IS GIVEN THEN I DO THE FOLLOWING SUBSTEPS:

1.1.1 I SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 0.75.

1.1.2 I ADD HYPERCALCEMIA TO THE REASONS OF REDUCTION.

*1.2 OTHERWISE, I REMOVE HYPERCALCEMIA FROM THE REASONS OF REDUCTION AND
SET THE FACTOR OF REDUCTION DUE TO HYPERCALCEMIA TO 1.00.

*E. 0

this canned text approach. After the program is written,. canned text is associated with each
part of the program explaining what that part of the program is doing. When the user wants
to know what is going on, the computer merely displays the text associated with what it is .

doing at the moment.

There are several problems with the canned text approach. The fact that the
program code and the text strings that explain that code can be changed independently

makes it difficult to maintain consistency between what the program does and what it claims

to do. Another problem is that all questions must be anticipated in advance and the
programmer must provide answers. for all the questions that the user might ask. For large
systems, this is a nearly impossible task. Finally, the system has no conceptual model of
what it is saying. That is, to the computer, one text string looks much like any other,

regardless of the content of that string. Thus, it is difficult to use this approach to provide
* more advanced sorts of explanations such as suggesting analogies or giving explanations at

different levels of abstraction.

Another approach is to produce explanations directly from the program. That is,

the explanation routines examine the program that is executed. Then by performing
relatively simple transformations on the code these explanation routines can produce

explanations of how the system does things. This approach has been used to produce
explanations in a number of systems [Davis76, Shortliffe76, Swartout77a,Swartout77b,
Winograd71]. More recent work by Kastner, Weiss and Kulikowski [KastnerS2] uses a
mixture of this approach with the canned text approach to achieve good explanations in the

*.- limited domain of a precedence-based therapy selection algorithm.

The old Digitalis Advisor could examine the code it used to check for increased

digitalis sensitivity caused by increased serum calcium and produce an explanation of what
that code did (as shown in Figure 1). Like most similar systems, it also maintained an
execution trace. The trace could be examined by the explanation routines to tell what was
done for a particular patient. Figure 2 describes how the system checked for myxedema.
The system also had a limited ability to explain why it was asking the user a question. Figure

3 shows the system's response when the user wants to know why he is being asked about

serum calcium.

Since the explanation routines only perform simple tanornimtion,. on the program

code, the quality of the explanations produced in this manner depends to a great degree on
how the system code is written. In particular, the basic structure of the program is not

altered significantly, and the names of variables in the explanation are basically the same as

those in the program. If the explanations are to be understandable, the expert system must
be written so that its structure is easily understood by anyone familiar with its domain of

expertise, and the variable and procedure names used In the program must represent
concepts which are meaningful to the user.

.9.

Fig. 2. Explaining How Thyroid Function Was Checked

I CHECKED SENSITIVITY DUE TO THYROID-FUNCTION BY EXECUTING THE FOLLOWING
STEPS:

1. I ASKED THE USER THE STATUS OF MYXEDEMA. THE USER RESPONDED THAT THE
STATUS OF MYXEDEMA WAS PRESENT.

2. SINCE THE STATUS OF MYXEDEMA WAS PRESENT I DID THE FOLLOWING:

2.1 I ADDED MYXEDEMA TO THE PRESENT AND CORRECTABLE CONDITIONS. THE
PRESENT AND CORRECTABLE CONDITIONS THEN BECAME MYXEDEMA.

2.2 I REMOVED MYXEDEMA FROM THE DEGRADABLE CONDITIONS. THE DEGRADABLE

CONDITIONS THEN BECAME HYPOKALEMIA, HYPOXEMIA, CARDIOMYOPATHIES-MI, AND
POTENTIAL POTASSIUM LOSS DUE TO DIURETICS.

2.3 I SET THE FACTOR OF REDUCTION DUE TO MYXEDEMA TO 0.67. THE FACTOR
OF REDUCTION DUE TO MYXEDEMA WAS PREVIOUSLY UNDETERMINED.

2.4 I ADDED MYXEDEMA TO THE REASONS OF REDUCTION. THE REASONS OF
REDUCTION THEN BECAME MYXEDEMA.

Fig. 3. Telling Why a Question is Asked

WHAT IS THE LEVEL OF SERUM CALCIUM?

ENTER NUMERICAL VALUE =-> why? (The user types "why?" indicating that he questions
why he is being asked to supply the value of serum potassium.)

MY TOP GOAL IS TO BEGIN THERAPY. ONE STEP IN DOING THAT IS TO CHECK
SENSITIVITIES. I AM NOW TRYING TO CHECK SENSITIVITY DUE TO CALCIUM.

This method of producing explanations has some advantages. It is relatively
simple. If the right way of structuring the problem can be found, it does not impose too great
a burden on the programmer; since the explanations reflect the code directly, consistency
between explanation and code is assured.

Despite these advantages, there are some serious problems with this technique. It
may be difficult or impossible to structure the program so that the user can easily
understand it. The fact that every operation performed by the computer must be explicitly
spelled out sometimes forces the programmer to program operations which a physician
would perform without thinking about them. That problem is Illustrated in Figure 2. Steps
2.1, 2.2, and 2.4 are somewhat mystifying. In fact, these steps are needed by the system so
that t can record what sensitivities the patient had that made him more likely to develop
digitalis toxicity. These steps are involved more with record keeping than with medical
reasoning, but they must appear in the code so that the computer will remember why it made
a reduction. Since they appear in the code, they are described by the explanation routines,

10-

although they are more likely to confuse a physician-user than enlighten him. An additional
problem is that it is difficult to get an overview of what is really going on here. While the

system is explicit about record keeping, it is not very explicit about the fact that it is going to
reduce the dose, though it hints at a reduction by saying that the "factor of reduction" is -

being set to 0.67.

A serious problem, and the primary one we will address in this paper is that the

system cannot give justifications for its actions. That is, while this way of giving explanations
can state what a system does or did, it cannot state why it did what it did. Justifications are
an important part of explanation. They can reveal either that a system is based on sound
principles or, equally importantly, show that a program is being pushed beyond the bounds
of its expertise. In the explanations given above, the system cannot state that it reduces the
dose because increased calcium causes increased automaticity. The information needed to
justify the program is the information that was used by the programmer to write the program,
but it does not have to be incorporated into the program for the program to perform
successfully. Since it is desirable for expert programs to be able to justify what they do as
well as do it, we need to find a way of capturing the knowledge and decisions that went into
writing the program in the first place.

It is interesting to note that work in computer aided instruction has followed a
similar path. Initially, canned text responses were employed, but these were found to be too
constraining. Later attempts were made to teach the rules used by expert systems
[Carr77b,Clancey79]. Clancey [Clancey79] notes that these rule-based systems presented
some explanation problems verv similar to the ones described here. More advanced work
recognizes that for successful teaching, the problem domain and problem solving
mechanisms must be explicitly represented [Brown75, Clancey8l].

5. Providing Justifications

We need a way of capturing the knowledge and decisions that went into writing the
program. One way to do this is to give the computer enough knowledge so that it can write

the program itself and remember what it did. While automatic programming itself has been
researched considerably [Balzer77, Barstow77, Green79, Long77, Manna77], the idea of

using an automatic programmer to help in producing explanations is new. Since we are
primarily interested in explanation, we have chosen not to deal with a number of problems
that arise in automatic programming, including: choosing between different
implementations, backup and recovery from dead-end refinements, and optimization.

XPLAIN's automatic program writer creates augmented performance programs

which not only perform the intended task, but also can be explained and justified. Figure 4
illustrates some of the kinds of explanations the system can produce. Note that the system

can justify its actions in terms of causal relations in the medical domain and that it Can
suggest analogies with previous explanations. These explanations should be compared
with those in Figures 1-3 to appreciate the improvement.

An overview of the XPLAIN system is given in Figure 5. The system has five parts: a
Writer, a domain model, a set of domain principles, an English Generator, and a generated
ref inement structure. The Writer is an automatic programmer. It has been used to write new
code which captures the functionality of major portions of the old Digitalis Advisor. The
domain model and the domain principles contain knowledge about the domain of expertise,
in this case, digitalis and digitalis therapy. They provide the Writer with the knowledge it
needs to write the code for the Digitalis Advisor. The refinement structure can be thought of
as a trace left behind by the Writer. It shows how the Writer develops the Digitalis Advisor.
When a physician user runs the Digitalis Advisor, he can ask the system to justify why the
program is doing what it is doing. The Generator gives him an answer by examining the
refinement structure and the step of the Advisor currently being executed. If we wanted to
write a new program covering a new medical domain, we would have to change the domain
model and the domain principles, but we should not have to change the Writer or the English
Generator. (The refinement structure would be generated by the Writer.)

Fig. 4. Justifications from a Program Created with XPLAIN

Please enter the value of serum potassium: why'?

The system is anticipating digitalis toxicity. Decreased serum potassium causes increased
automaticity, which my cause a change to ventricular fibrillation. Increased digitalis also causes,
increased automaticity. Thus, Vf the system observes decreased serum potassium, it reduces the dose
of digitalis due to decreased serum potassium.

Please enter the value of serum potassium: 3.7

Please enter the value of serum calcium: why?

(The system produces a shortened explanation, reflecting the tact that It has already
* explained several of the causal relationships in the previous explanation. Also, since the

system remembers that it has already told the user about serum potassium, it suggests the
analogy between the two here.)

* T'he system is anticipating digitalis toxicity. Increased serum calcium also causes increased
automticity. ThuM (as wit decreased serum potassium) If the system observes increased serum -

calcium, It reduces the dose of digitalis due to Increased serum calcium.

Please enuter the value of serum calcium: 9

.72- 4

Fig. 5. System Overview

Refinement
Structure

5.1 The Refinement Structure

The refinement structure is created by the Writer from the top level goal (in this
case "Administer Digitalis") as ,t writes the Digitalis Advisor. The refinement structure is a
tree of goals, each being a refinement of the one above it (see Figure 6). Here, "refining a

goal" means turning it into more specific subgoals. As Figure 6 shows, the top of the tree is
• :a very abstract goal: in this case, "Administer Digitalis". This goal is refined into less

abstract steps by the Writer. These more specific steps are steps the system executes to
. administer digitalis. For example, one such subgoal is to "Anticipate Toxicity", that is, to
" anticipate whether the patient may become toxic due to increased digitalis sensitivity. The

Writer then refines this more specific goal to a still more specific goal. Eventually, the level
of system primitives is reached. System primitives are built-in operations. Normally they are
very basic, simple operations, so the fact that they cannot be explained is usually not a
problem. Typical primitives include arithmetic operations like PLUS and TIMES and those
that set variables to a particular value. The leaves of the refinement structure constitute the
basic operations performed by the Digitalis Advisor, the program that we wanted the
automatic programmer to produce.

2.

" Isu . . , u . .

. F. 787. .7 77'" "

-13-

Fig. 6. A Sample Refinement Structure

Abstract Administer Digitalis

If Decreased Serum K
then reduce dose

Specific

System Primitives

5.2 The Domain Model

The domain model represents the facts of the domain. In this case, it is a model of

the causal relationships important in digitalis therapy. The model is similar in character to
the causal networks of CASNET [Weiss78], with two differences. First, the causal links are

- not numerically weighted. Weights could easily be added, but for this domain, most of the
- reasoning does not require them. 3 Second, inter-relationships between causal paths which

impinge on the same state are explicitly represented.

A simplified portion of the model is shown in Figure 7. The boxes are states and
the arrows represent causality. This model shows some of the effects of increased digitalis.
It also shows that increased serum Ca and decreased serum K each can cause increased
automaticity. These facts correspond to the sorts of facts that a medical student learns in
class during the first two years of medical school. They are descriptive. While they tell what
happens in the domain, they do not indicate what the Advisor's behavior should be to

3. When numerical weighting is required, XPLAIN asks the system developer for the appropriate
constants during creation of the performance program.

.. tit.,

.14-

achieve its goal of administering digitalis. For example, the model says that increased
digitalis can cause a change from a normal heart rhythm to ventricular fibrillation and it
notes that that is dangerous, but it does not say what should be done to prevent such a
change. Medical students go to medical school for an additional two years and acquire
these procedures by observing experienced practitioners at work. The set of domain
principles provides the Writer with this sort of procedural knowledge.

5.3 Domain Principles

Domain principles tell the Writer how something (such as prescribing a drug or
analyzing symptoms) should be done. They can be thought of as abstract procedural
schema which are filled in with facts from the domain model to yield specific procedures. A
(somewhat simplified) domain principle appears in Figure 8. Domain principles are
composed of variables and constants. Variables appear in boldface in Figure 8. Pattern
variable matching uses the kind hierarchy imposed by XLMS, the knowledge representation
language used by XPLAIN. For an object to match a pattern variable, it must be at the same
level as or beneath the pattern variable in the hierarchy. Thus, the variable finding matches
increased serum calcium or decreased serum potassium, since increased serum calcium
and decreased K are both kinds of findings. The principle appearing in Figure 8 is used to
anticipate digitalis toxicity. It represents the common sense notion that if one is considering
administering a drug, and there is some factor that enhances the deleterious effects of that
drug, then if that factor is present in the patient, less drug should be given. This principle
has three parts: a goal, a domain rationale, and a prototype method. In general, a principle

Fig. 7. A Simplified Portion of the Domain Model
I" ". -*

Incrsed Digitalis sed Ca Decreased K

[Decreased Conduction Increased Automaticity

Sinus Bradycardla 1
CAL

I--

* *:o. "...'*.,-..,'.. .

-15.

may also have a set of constraints associated with it which must be satisfied if the principle
is to be used.

The goal tells the Writer what the principle can accomplish. In this case, the
* principle can help the Writer in anticipating toxicity. Domain principles are organized into a

hierarchy based on the specificity of their goals. The Writer selects the principle whose goal
matches the step to be refined and whose constraints (if any) are satisfied .4 The domain
rationale is a pattern which is matched against the domain model. It provides, in the context
of a particular method for achieving a goal, additional information necessary for achieving
the goal. In this example, the domain rationale describes which findings should be checked

* in anticipating toxicity. Essentially, this domain rationale defines the characteristics that a
finding must have if it is to be considered when checking for digitalis sensitivities. The
system looks in the domain model for every dangerous deviation (e.g. change to
ventricular fibrillation) caused by the combination of a a finding (e.g. increased Ca) and an

Fig. 8. An Example of a Domain Principle

Goal: Anticipate Drug Toxicity

Domain Rationale:

Fing IeasedDrug

Dangerous Deito

Prototype Method:
If the Finding exists
then: reduce the drug dose
else: maintain the drug dose

* 4. If more than one principle matches the most specific one is selected. Thus, the Writer can handle
special cases cleanly. For example, a general method for obtaining the value of a variable x from the
user would be to ask "What is the value of x?". If the variable were boolean, a more appropriate
question would be to ask "is x present?' and expect a yes or no answer. The goal for the first method

* would be "Determine the value of a variable", while the goal for the second would be the more
specific "Determine the value of a boolean variable".

176

increased drug level. It finds two matches: a change to ventricular fibrillation can be
caused by an increased level of digitalis when combined with either increased calcium or
decreased potassium.

The prototype method is an abstract method which tells how to accomplish the
goal. Once the domain rationale has been matched, the prototype method is instantiated
for each match of the domain rationale. Instantiating the prototype method means creating
a new structure by replacing the variables in the prototype method with the things they

* matched. In this case, two structures are created. In the first, finding is replaced by
increased serum Ca and drug is replaced by digitalis. In the second, finding is replaced by

* decreased serum K and drug is again replaced by digitalis. Note that these new structures,
change the single abstract problem of how to anticipate toxicity into several more specific k

* ones, such as how to determine whether increased serum K exists, how to reduce the dose,
and how to maintain it.

After instantiation, the goals of the prototype method are placed in the refinement
structure as sons of the goal being resolved. If we look at Figure 6, we can see that the
instantiated prototype method that checks for decreased serum K has been placed below
the Anticipate Toxicity goal. Once they have been placed in the refinement structure, the

* newly instantiated goals become goals for the writer to resolve. For example, after the
* Writer applied this domain principle, it would have to find ways of determining whether

increased calcium existed in the patient, whether decreased potassium existed, and ways of

reducing and maintaining the dose. The system continues in this fashion, refining goals at
the bottom of the structure and growing the tree down and down until eventually the level of
system primitives is reached.

5.4 The Domain Rationale: More Detail

As was mentioned above, the domain rationale is a pattern which is matched
against the domain model. It serves two purposes. First, it is a constraint on the
acceptability of the domain principle, because if no matches are found, the domain principle

* is rejected. Second, it can also be thought of as a further specification of the performance
* program.

To place further restrictions on the match that would be difficult to express as a
pattern, the domain rationale can have predicates associated with it which filter out
unacceptable matches. The domain rationale we have been using as an example has three
predicates. (These are not shown in Figure 8.) The first predicate specifies that the finding
cannot be the increased drug level. We cannot allow that match because we are looking for
other factors which Increase the danger of giving the drug. The second predicate fails If the

* current value of finding is the same as the value it had on a previous match. This
requirement ensures that for each successful match, the value of finding will be different.

, .' .. .-° ." ' " ' ' ." " . - , "" " " . -. '. r' "r '" " " " ° :' " "• ' ' " '"

-17-

Fig. 9. Overview of the Program Writer

Choose Step
to Refine

yAlready"
Ceated a Method for

this Step?

Find Domain Principle

Meet Constraints?

Add Nw Step to

Steps-to. Refine I

RI
FemoveStpJs

Refined I

7,7

from its value in all other successful matches. This predicate is necessary because a
particular finding may cause more than one dangerous deviation. For the purposes of this
principle it is sufficient that it cause one dangerous deviation. The third predicate requires

V.: that the causal effects of the increased drug level and finding must be at least causally
additive. This predicate checks to see whether the causal links in the causal chains
between finding and dangerous deviation and between increased drug and
dangerous deviation are at least additive6 at the node where the two chains merge
together. That is, the combined dangerous deviation caused by the finding together with the
increased drug must be at least as great as the sum of their individual effects.

When the domain rationale is matched against the digitalis domain model, there are
two matches, corresponding to the two sensitivities that are described above-increased
serum calcium and decreased serum potassium. When the pattern matcher returns the

* matches, the matched structure and variable bindings are saved for use in producing
explanations. Once all the matches have been obtained, the Writer instantiates, the

* prototype method.
Ott

5.5 Intertwining Specification and Implementation

* The notion of the domain rationale as a partial program specification is something
that seems to be unique to the XPLAIN system. Generally, in other automatic programming
systems, the complete specifications for the program must be given before the
implementation of the program begins. Here, the specifications for the program are
elaborated by matching the domain rationale against the domain model as the refinement of
the program progresses. Thus, the nature of the specification will be affected by which
particular domain principles are chosen for the implementation so that the process of -

elaborating the specification of the performance program is intertwined with its
implementation [Swartout82].

This approach permits considerable flexibility and generality. The creator of the
domain model has to encode only the descriptive knowledge of the domain. He does not
have to worry about how that knowledge will be used in the creation of a program or worry
about what that program should do (as he might if he were trying to create program

* specifications). New information can be added to this model and incorporated into a new
* version of the performance program by re-running the automatic programmer. A particular

piece of knowledge might be usec, for several purposes (or not at all). For example,
information about the effects of increased digitalis levels is used by the system both in
anticipating toxicity and in assessing toxic and therapeutic reactions.

5. Effects which are synergistic would be considered more than additive.

- 19-

Davis [Davis76] introduced the notion of meta-rules, which bear some similarity to
domain principles. However, meta-rules were used only for ordering and pruning the
application of lower level rules within the context of a standard rule interpreter. Domain
principles can control program refinement to a much greater degree.

The domain rationale is one of the mechanisms used in the XPLAIN system for tying
the independent domain model into the specification of the performance program. Yet, the
domain rationales themselves can be quite general, and are really independent of the
particular domain model. The domain principle used by the system for anticipating digitalis
toxicity could be used with different domain models to accomplish the same task for a
number of other drugs.

5.6 Integrating Program Fragments

The Writer must also take into account interactions between the actions it takes.
For example, the individual instantiations above indicate that if increased serum calcium
exists the dose should be reduced, and if decreased serum potassium exists the dose
should be reduced, but they do not tell what should happen if both increased calcium and
decreased serum potassium co-occur. Thus, the Writer is confronted with the problem of
integrating these individual instantiations into a whole. (See Figure 10.)

Exactly what should happen depends on the characteristics of the domain. It could
be that the occurrence of either sensitivity "covers" for the other, so that only one reduction
should be made and the predicate of the IF should be made into a disjunction. Or, (as is
actually the case), it could be that when multiple sensitivities appear, multiple reductions

should be made.

Interaction problems of this sort are handled by setting them up as explicit goals to

be refined. For each of the matches of the domain rationale, the Writer instantiates the
prototype method. It then places each of these instantiations into a larger structure called a
split-join. The split-join is placed in the refinement structure and domain principles are used
to transform it into executable program structure. If only one match is found for the domain
rationale, or if there is no domain rationale at all in the domain principle, the Writer just
instantiates the prototype method and does not make up a split-join.

6-

20-

Fig. 10. A Split to be Resolved

.'

If: Increased Serum Ca If: Decreased Serum K
then: Reduce Dose then: Reduce Dose
else: Maintain Dose else: Maintain Dose I

Note: To keep the ligure simple, only 2 sensiivities are shown

5.6.1 Refining a Split-join

The system chooses to refine the split-join next because it will result in a

transformation of the program structure. It is necessary to refine transformations first j
because they may impose constraints on the way other steps will be refined.

The domain principle that will be used produces an executable piece of code by

serializing the parts of the split join (see Figure 11). That is, the checks for increased serum
calcium and decreased serum potassium will be performed in turn and the outputs for the
first reduction will be connected to the second, so that if multiple sensitivities exist, multiple
reductions will be performed.

The goal of the domain principle matches an arbitrary number of program

fragments of the form:

-21-

Fig. 1 1. Resolving a Split By Serialization
= (dsDlitrespaper.press<

It: Increased Serum Ca
then: Reduce Dose

pli . else: Maintain Dose

If: Decreased Serum K
then: Reduce Dose
else: Maintain Dose

IL
Note: To keep the figure simple, only 2 sensitiviUes are showm

If Exists(finding)
then adjust1
else adjust2

(Note: boldface represents pattern variables)

Although the goal matches, there are some constraints associated with this domain
principle which must be satisfied before it can be used to transform the program structure.
The constraints check whether this serialization is a reasonable sort of resolution. There are
two general types of constraints: domain constraints and refinement constraints.

Domain constraints are tests to see whether a domain principle is applicable given
the characteristics of the domain. The first constraint checks that all the deviations (e.g.
increased serum calcium, decreased serum potassium and cardiomyopathy) are causally
independent in the sense that none of them causes the other. This is done by examining the
domain model to see if there is a causal chain leading from any of the deviations to any
other. If one finding causes another, serialization would be inappropriate because if both

.22-

findings appeared a double reduction would be made when only the reduction for the
underlying cause was appropriate.

The second constraint checks to see whether the effects of the causal chains are
additive. That is. before making multiple reductions for multiple sensitivities, it must be the
case that the occurrence of multiple deviations is worse than just one by itself. The domain

~ model supplies this information.

Refinement constraints are the other type of constraints used in this domain
principle. Like domain constraints, refinement constraints determine whether or not a
particular domain principle is applicable, but if it is found to be applicable, they also

1 constrain the way in which further refinements may be made.

In this particular case, we are resolving the split-join by serializing the reductions.
Whether or not this is a valid way to proceed depends in part on how the reductions

* themselves are refined. If the reductions are to be performed by subtracting some quantity
from the dose, then there is some possibility that the dose will eventually become negative.
That, of course, does not make sense. So the principle for resolving the split-join would
have to insert a step at the end which would check for a negative dose and do whatever was
proper. On the other hand, if the dose is reduced by multiplying the original dose by some
constant less than one to produce a new dose, then the dose can never become negative,

* and no check is required. To resolve the split-join now, the Writer needs to be able to
constrain the resolution of the steps that perform the reduction.

The domain principle for refining the split-join specifies that the Writer must find
domain principles for refining the two instances of [adjusti] and [adlust2] (which are the
calls to reduce and maintain the dose respectively) so that that the method of the principle is
described as a multiplicative operator. If a principle is found for each of the calls, the
refinement constraint is satisfied. As the principles are found, the system remembers them
by associating them with the appropriate entry in the list of steps to be refined.

5.7 Assessing Toxicity

Whenever the dosage of digitalis is being adjusted, it is necessary to monitor the
patient closely to determine the effect (if any) of the change. In the old Digitalis Advisor,
there were two sets of routines for assessing the drug's effects. One set was concerned
with the harmful toxic effects of digitalis, while the other dealt with the therapeutic effects.

K ~Each set of routines produced an assessment of the degree to which the patient was .-

showing either toxic or therapeutic effects. Based on these assessments, the system C
recommended corrective actions if needed. This section briefly describes how the portion

L------

.23-

of the Digitalis Advisor that assesses toxicity was implemented using the XPLAIN system. A
more complete discussion may be found in [Swartout8l]

To assess toxicity, the user is asked whether the various toxic effects that digitalis
may cause have been observed in the patient. The assessments of these individual findings

-are then combined into an overall assessment of toxicity. The assessment is a number
representing the degree of toxicity and the individual assessments are combined together
using numerical techniques.

The cardiologists we consulted felt that when assessing digitalis toxicity they
looked for signs in three general classes: highly specific signs of digitalis toxicity,
moderately specific signs, and signs with low specificity (also called non-specific signs). P,
The original Digitalis Advisor adopted these classifications and weighted the various
findings according to their classification to produce an assessment of digitalis toxicity. To
implement this algorithm, the domain model had to be augmented to indicate the various
types of findings that could result from digitalis toxicity, and the specificity of those findings.
The domain model used by the implementations appears in Figure 12. h

It was also necessary to add a number of new domain principles. The top level
principle to assess digitalis toxicity just sets up the goals to assess the highly specific signs,
moderately specific signs and non-specific signs and to then combine them together. The

* three different assessment steps are all refined by the same domain principle because that
principle has the degree of specificity as a variable in its goal:6

Assess specific findings of drug toxicity.

The domain rationale looks for all findings caused by increased digitalis that have the
degree of specificity specified in the call. For example, when the call is "Assess highlyI
specific findings of digitalis toxicity" the domain rationale will find paroxysmal atrial
tachycardia with block, double tachycardia, and av dissociation, because these are all highly
specific signs of digitalis toxicity.

The prototype method then sets up calls to assess these various findings. For most
of the findings, the system just asks the user whether the finding is present or not. Some
findings, such as premature ventricular contractions (PVCs), are properly assessed by

* ccmparing their current level to a patient-specific baseline. A special purpose domain

principle is provided for assessing PVCs. Since the Writer always picks the most specific

6. This is the English translation of the goal used in the system. Again, variables appear in boldface.
Here, specific is a variable which can take on the values highly specific, moderately specific, or
non-specific.

-24-

Fig. 12. Domain Model For Toxicity
I.

Increased Digitalis Increased Ca Decreased K

Decreased Conduction Increased Automaticity

H AV Block (Wenkebach) "Bgeminy"

Finus Brdycardia PV~a c
l"n oxysmal AVDuleT

principle for the call being refined, this special-case knowledge is automatically employed at
the appropriate time. The code for assessing findings is not normally explained to
physicians, because It is unlikely to interest them. The viewpoint mechanism (described
below) is used to encode that fact.

It is encouraging to note that little additional mechanism needs to be added to deal *1
with assessing toxicity, a problem which seems quite different from the earlier examples. -4
The algorithm of the program writer was not altered, and much of the domain model needed
for dealing with sensitivities was applicable in assessing toxicity.

-25-

6. Generating Explanations

We have described how XPLAIN creates the refinement structure and the
characteristics of the domain principles and the domain model. These are used by the
explanation generator to provide English justifications of the program's behavior and
descriptions of what the program does and how it does it.

This section describes how XPLAIN produces explanations. By design, the
knowledge structures left behind by the automatic programmer make it possible to achieve
quite high quality English output with a simple generator. The generator is an engineering
effort aimed at producing acceptable English. The main thrust of the work described in this
paper has been to investigate ways of representing the knowledge necessary to justify the
behavior of expert consulting systems. A generator is necessary to demonstrate the
capabilities of the approach espoused here, but is not the focus of the research. (See
[Mann8O, McDonald80] for a discussion of current work in generation.)

The generator is really composed of two types of generators. The low level phrase
generator constructs phrases directly from XPLAIN's knowledge base. Higher level answer
generators determine what to say-they select the parts of the knowledge representation to
be translated into English by the phrase generator in response to specific questions. The
answer generators must deal with the issue of determining at what level an explanation
should be given. In making this determination, it employs knowledge of the state of the
program execution, knowledge of what has already been said, and knowledge of what the
user is likely to be interested in. Other issues the answer generators confront include
deciding whether to omit information the user can be presumed to know from the
explanation and determining whether analogies can be suggested to previous explanations.
The phrase generator and the knowledge representation language used by XPLAIN, called
XLMS, will be briefly discussed in the next section, followed by a discussion of the answer
generators. For a more detailed discussion, see [Swartout8l1.

6.1 XLMS Notation and the Phrase Generator

The XPLAIN system uses XLMS to manage its knowledge base. XLMS (which
stands for eXperimental Linguistic Memory System) was developed by Lowell Hawkinson,
William Martin, Peter Szolovits and members of the Clinical Decision Making and Automatic

4 Programming Groups at MIT. Since a complete understanding of the intricacies of XLMS is -

not needed to understand the XPLAIN system, this section is only intended to give the
reader a brief overview of XLMS. For a more complete discussion of the design goals and
implementation of XLMS see [Hawkinson8O, Martin79].

-26-

For the purposes of this paper, perhaps the best way to think of XLMS is that it is an
extension of LISP that allows one to use structured names. In LISP, atoms are used to name
variables and functions. In the XPLAIN system, variables and procedures are named by
XLMS concepts-the difference is that these concepts can have a substructure which can
be taken apart and examined, while LISP atoms are indivisible.

6.1.1 XLMS Concepts

In XLMS, every concept is composed of an ilk, a tie and a cue and is written as:

[(<iIk>'<tie> <cue>)]

or, to pick an actual example from the XPLAIN system:

[(LEVEL-R DIGITALIS)]

The ilk of a concept is itself a concept. It tells what kind of a concept this is. Thus, the
example concept is a kind of level. The cue of a concept is either a concept or a LISP
atomic symbol. It indicates what it is that makes this concept different from others with the
same ilk. The example represents the "level of digitalis": a particular kind of level. Finally,
the tie of a concept indicates the relationship between the ilk and the cue. In this case, the
tie is R for "role". Role ties are used to indicate slots in concepts. Thus this concept
represents the "level" slot in the concept "digitalis". This is one implementation of the
notion of slots and frames as described by Minsky [Minsky75]. There are several ties that

are used extensively in the XPLAIN system. Some of these are listed in Table I together with
examples of their use.

Concepts in XLMS are organized into a kind hierarchy. The root concept is
[summum-genus] (see Figure 13) and is pre-defined in XLMS. "s ties create a strict
taxonomy of mutually exclusive subclasses. Like atomic symbols in LISP, concepts in XLMS
are unique.

In LISP, it is possible to associate lists and atoms relating to a particular atomic
symbol with that symbol by placing them on that symbol's property list. In XLMS, one can
associate concepts relating to a concept, with that concept, by attaching them. The
viewpoint mechanism (described more fully below) uses attachments placed on concepts by
the Writer to determine whether or not the concept should be explained.

In the XPLAIN system, a phrase generator is associated with each kind of tie. To
generate English for a particular concept, the tie of the concept is examined and control Is

passed to the corresponding phrase generator. The structured nature of XLMS concepts

L...L

.27-.-

Table 1. Types of Ties (partial list)
Tie Name Example Use English Form Purpose

*f function [(ballof red)] (the) red bal! modifies

* r role-in [(colorr ball)] (the) color of slot-filling
(the) ball

*1 individual [(bal15 i 1)] ball instantiates
individual

* o object [(treat*o patient)] treat (the) verb-object
patient

* S species [dog dog (see text)
(animals "dog")]

Fig. 13. The Kind Hierarchy

Level State Finding

This figure only shwsa a porfma of ahm hierehy

M. T. .

-28-

and the fact that XLMS is a linguistically oriented representation language makes it relatively
straightforward to construct a phrase generator that can turn an XLMS concept Such as:

[(assesso (levelor digitalis))]

into the English phrase:

Assess the level of digitalis

* The phrase generators are completely described in [Swartout~i]. The next section

* discusses the more interesting question of how XPLAIN chooses what to say.

6.2 The Answer Generators: Determining What to Say

8.2.1 Viewpoints

The reader may recall that one problem with previous explanation systems has been the
problem of computer artifacts. Computer artifacts are parts of the program which appear
mainly because we are implementing an algorithm on a computer. If these steps are

* described to physicians, they are likely to be uninteresting and potentially confusing. The
introductory section gave some examples of these computer artifacts. In the XPLAIN
system, we can attach viewpoints to steps in prototype methods to indicate to whom the step
should be explained." When a prototype method is instantiated, the instantiated steps will
share these viewpoints. As the XPLAIN system is generating an explanation for a step it
compares the viewpoint(s) of the step (if any) against a list of viewpoints which should be
filtered out and another list of viewpoints which should be included. If one of the step's
viewpoints appears on the include list, that step is included In the English explanation. If
not, and one of the viewpoints appears on the exclude list, the step is excluded from the
explanation. If the step has no viewpoint, it is included in the explanation. This approach
allows us to separate those steps that are appropriate for a particular audience from those
that are not. Of course, the exclude and include lists may be changed to reflect a change in A

* the user's viewpoint.

While this Is a simple solution from the standpoint of generation, it is a feasible one
because we are employing an automatic programmer. In the domain principles, we bring
together and define for the system to use, computer implementation knowledge and medical
reasoning knowledge. A domain principle is thus the appropriate place to indicate what
viewpoint should be taken on the knowledge that it is composed of. By placing a viewpoint

7. This can occur either during the refinement of a step from a higher goal, or during a
transformational refinement.

7,"

-29-

on a step in a prototype method, we cause all the instantiations of that step (and there are
usually several) to share that viewpoint. If we were to try to do the same thing at the level of
the performance program (without an automatic programmer) we would have to annotate
each individual step-we could not capture as high a level of abstraction.

This result is consistent with the observation we made in the introduction:
improvements in the quality of the explanations generated resulted more from the use of an

automatic programmer than from increases in the sophistication of the generation routines.
It should be pointed out, however, that while this solution allows the system to customize its

-* explanations based on a particular viewpoint or set of viewpoints, the problem of deciding
which viewpoint to present to a particular user remains open and is beyond the scope of this
paper.

6.2.2 Answering "Why" Questions

One of the chief goals in this research was to have the XPLAIN system explain why
the performance program was doing what it was doing. In producing answers to such

questions, the system makes use of the knowledge in the domain model and the domain
principles as well as traces left behind by the automatic programmer resulting from creation

of the performance program. Some of the capabilities of the system were illustrated in the
section 5 where the performance program was anticipating digitalis toxicity. Additional
capabilities are illustrated below from those portions of the advisor that anticipate toxicity
and assess toxicity.

is the patient showing signs of cardlomyopathy? (yes or no): why?

The system is anticipating digitalis toxicity. Cadiomyopathy causes Increased
automaticity, which my cause a change to ventricular fibrillation. Increased digitalis
also causes increased automaticity. Thus, if the system determines that cardiomyopathy
exists, it reduces the dose of digitalis due to cardiomyopathy.

This explanation is similar to those in Section 5.

The remaining explanations are produced while assessing toxicity.

is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or no):
why'

The system is assessing the highly specific findings of digitalis toxicity. Increased
digitalis may cause paroxysmal atrial tachycardla with block which is a highly specific
finding of digitalis toxicity.

-30-

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or no):
overview

The system repeats the question, but the user wants an overview. This is
produced by describing the method for assessing highly specific findings which
was mentioned in the previous explanation.

To assess the highly specific findings of digitalis toxicity:
1. The system assesses paroxysmal atrial tachycardia with block.
2. It assesses double tachycardia.
3. It assesses av-dissociation.
4. It combines the assessments of paroxysmal atrial tachycardia with
block, double tachycardia and av-dissociation.

This produces the assessment of the highly specific findings of
digitalis toxicity, which is used when the system combines the
assessments of the highly specific findings of digitalis toxicity,
the moderately specific findings of digitalis toxicity and the
non-specific findings of digitalis toxicity.

To avoid leaving the user hanging, the system describes how the output of the
method will be used in a higher context. This is done whenever the output of the
method is something which is not likely to be familiar to the user. Thus, if the
output of a method were a drug dose, no additional explanation would be
generated (at least for a medical audience) because the user would be presumed
to be familiar with the notion of a drug dose.

Is the patient showing signs of paroxysmal atrial tachycardia with block? (yes or no):
why?

Still curious, the user asks "why?" again. This causes the system to give an
explanation of the procedure that calls the procedure for assessing the highly
specific findings. This explanation is much shorter, because the domain
principle used to refine the higher level procedure had no domain rationale.

The system is assessing digitalis toxicity. One step in doing that Is to assess the highly
specific findings of digitalis toxicity.

Is the patient showing signs of paroxysmal atrial tachycardla with block? (yes or no):
overview

This time the description is offered at the level of the higher procedure.

To assess digitalis toxicity:
1. The system assesses the highly specific findings of digitalis
toxicity.
2. It assesses the moderately specific findings of digitalis toxicity.

.31.

3. It assesses the non -specific findings of digitalis toxicity.
4. It combines the assessments of the highly specific findings of
digitalis toxicity, the moderately specific findings of digitalis
toxicity and the non-specific findings of digitalis toxicity.

This produces the assessment of digitalis toxicity, which is used
when the system adjusts the dose of digitalis. .

When a "why" question is entered, control passes to the routine that produces
* justifications. This routine determines at what level the description should be given, states

what is going on in general, describes the domain rationale (if any) used in refining the step
being described, and finally describes the step. Each of these four stages will be outlined

* below.

6.2.2.1 Choosing the Level of Description

The system uses the viewpoint attachments to determine where to start the
explanation. The control stack of the interpreter executing the performance program is
available to the explanation modules. The justification routine goes up the stack looking for

*the first procedure which is not an excluded viewpoint and which has no procedure that has tp
* an excluded viewpoint above it. If that procedure happens to be a system primitive8 with a

system primitive above it, then the system keeps going up the stack until it finds a procedure
* which does not have a system primitive above it.

Consider the situation presented in the sample interaction above where the system
first queries the user about the "signs of paroxysmal atrial tachycardia" and the user
responds "why?". As was mentioned earlier, the procedures for assessing findings, like

* paroxysmal atrial tachycardia, have computer-viewpoints, indicating that physicians will not
be interested in them. Therefore, the system will start giving its explanation at the next level

* up, at the level of the call to that procedure. This will be referred to as the current.
description level. In contrast, if the exclude list had not contained computer-viewpoint,
explanation would have begun at a lower level, producing the following explanation:

hs the patient showing signs of paroxysmal arial tacbycaril with block? (yes or no):0

why.

The system is assessing paroxysmal atrial tachycardia with block. If the status of

8. System primitives include asignment statements, conditionals, arithmetic operators and the like.

-32-

paroxysmal atrial tachycardia with block is equal to present, the assessment of
paroxysmal atrial tachycardia with block is set to the assessment level for present

U findings (1), otherwise the assessment of paroxysmal atrial tachycardia with block is set
to the assessment level for absent finidings (0).

This is the sort of information a person maintaining the advisor might wish to know, but that
* a medical audience certainly would not.

6.2.2.2 Stating What's Going On in General

To give the user an overview of what the system is trying to accomplish, the system
fin~ds the next procedure above the current description level in the control stack. This will be
called the higher level procedure. It then generates a phrase using the name of the
procedure to describe what is going on:

The system is assessing the highly specific findings of digitalis toxicity.0'

6.2.2.3 Explaining the Domain Rationale

If the higher level procedure was refined using a domain principle which had a
domain rationale, then the procedure at the current description level must be the result of
one of the matches of the domain rationale. The system finds the domain rationale and the
particular match of it that resulted in the procedure at the current description level. Flags
are set to indicate to the phrase generator that it should replace occurrences of pattern
variables with the objects they matched. After this environment has been set up, the
complete pattern is found and converted to English using the phrase generator. For
example, the phrase generator produced the following description of the domain rationale
of the domain principle that refined the procedure to assess highly specific toxic findings:

72 Increased digitalis may cause paroxysmal &trial tachycardia with block which is a highly
specific finding of digitalis toxicity.

* 6.2.2.4 Finishing Up the Explanation

Finally, the system uses the phrase generator to produce a description of the step
at the current level of description. So when the user replies "why?" to the program's
question about cardiomyopathy, XPLAIN generates the following description of the current
step:

Thus, If the system determines that cardioniyopathy exists, It reduces the dose of

-33 -

digitalis due to cardiomyopathy.

The system then re-iterates its original question. If the user asks "why?" again, the system 0
moves the current description level up to the level of the next higher level procedure and
repeats the explanation process.

Sometimes this description is omitted. When the user types "why?" in response to
the program's first question about paroxysmal atrial tachycardia, the current level of
description is "assess paroxysmal atrial tachycardia with block". Yet, XPLAIN does not
produce the sentence:

"Thus, the system assesses paroxysmal atrial tachycardia with block." - -

as the last sentence of its answer to the second question. The reason is that such a
sentence would have been redundant. The user already knows that the system is assessing
paroxysmal atrial tachycardia with block, because he has just been asked a question about
it. Following the general principle that the user should not be told something he already
knows, the system deletes this part of the explanation if the step about to be described is a
type of assessing step and the object of that step is the same as the thing the user has been
asked about.

Given the system described so far, it is relatively easy to get it to generate
descriptions of methods by translating them directly into English. The explanations given by
the "overview" command in the previous section were produced by passing the current
higher level procedure to the function that describes methods. However, as we pointed out
in the introduction, this particular style of explanation has some limitations. In the next
section, we present a different way of explaining methods which provides a richer sort of
abstraction which cannot be done in explanations produced directly from the code.

6.2.3 Domain Principle Explanations

In the original version of the Digitalis Advisor, when we wanted to give a more
abstract view of what was going on, we just described a higher level procedure
[Swartout77a, Swartout77b]. In this regard, we were following the principles of structured
programming. While this approach was often reasonable, there were times when it was

considerably less than illuminating. The general method for anticipating digitalis toxicity _
was called "Check Sensitivities" in the old version of the Digitalis Advisor. An explanation of
it appears in Figure 14. While this explanation does tell the user what sensitivities are being

. .7

-340"- - 34 -

Fig. 14. An Explanation From the Old Digitalis Therapy Advisor

(describe-method [(check sensitivities)])

TO CHECK SENSITIVITIES I DO THE FOLLOWING STEPS:
1. I CHECK SENSITIVITY DUE TO CALCIUM.
2. I CHECK SENSITIVITY DUE TO POTASSIUM.
3. I CHECK SENSITIVITY DUE TO CARDIOMYOPATHY-MI.
4. I CHECK SENSITIVITY DUE TO HYPOXEMIA.
5. I CHECK SENSITIVITY DUE TO THYROID-FUNCTION.
6. I CHECK SENSITIVITY DUE TO ADVANCED AGE.
7. I COMPUTE THE FACTOR OF ALTERATION.

checked,9 it does not say what will be done if sensitivities are discovered nor does it say why
the system considers these particular factors to be sensitivities. Finally, it is much too
redundant and verbose. The first objection can be dealt with by removing the calls to lower
procedures and substituting the code of those procedures in-line. This results in the
somewhat improved explanation produced by XPLAIN when it is asked to describe the
method for anticipating digitalis toxicity (see Figure 15). However, while this explanation
shows what the system does, it does not say why things like increased calcium,
cardiomyopathy and decreased potassium are sensitivities, and if anything, it is even more
verbose than the original explanation.

The reason we cannot get the sorts of explanations we want by producing
explanations directly from the code is that much of the sort of reasoning we want to explain
has been "compiled out." Thus, we are forced into explaining at a level that is either too
abstract or too specific. The intermediate reasoning which we would like to explain was
done by a human programmer in the case of the old Digitalis Advisor. However, because
this performance program was produced by an automatic programmer, we have a handle on
that reasoning. For example, if we were to explain the domain principle that produced the
code for anticipating digitalis toxicity rather then the code itself we would get the
explanation that appears in Figure 16. This explanation is produced by first describing the

9. The reader may notice that there were more sensitivities checked in the original version of the
program than in the current version. We now feel that some of these, such as thyroid function and
advanced age, should not be treated as sensitivities per se because they tend to have an effect on
reducing renal function and hence slowing excretion, rather than on increasing sensitivity to digitalis.
The other sensitivities would be easy to add by including the appropriate causal links in the domain
model.

.* . =

-35 -

Fig. 15. An Explanation From the Code for Anticipating Toxicity

(describe-method [((ANTICIPATE * (TOXICITY* F DIGITALIS)) * I1)])

To anticipate digitalis toxicity:
1. If the system determines that cardiomyopathy exists, it reduces
the dose of digitalis due to cardiomyopathy.
2. If the system determines that decreased serum potassium exists, it reduces
the dose of digitalis due to decreased serum potassium.

3. If the system determines that increased serum calcium exists, it
reduces the dose of digitalis due to increased serum calcium.

Fig. 16. Explanation of a Domain Principle

(describe-proto-method [(anticipate*o (toxicity*f digitalis))])

The system considers those cases where a finding causes a dangerous deviation and increased
digitalis also causes the dangerous deviation. If the system determines that the finding exists, it
reduces the dose of digitalis due to the finding.

The findings considered are increased serum calcium, decreased serum potassium and
cardiomyopathy.

domain rationale with the refinement pattern variables 10 replaced by what they matched,
but with the domain pattern variables described as themselves rather than as what they
matched. Thus while the system says "increased digitalis" rather than "increased drug", it

nevertheless says finding" rather than "increased serum potassium". The next part of the
explanation is produced by describing the prototype method. Finally, the set of values is
given for the domain variable used in the prototype method. Thus, the use of an automatic
programmer not only allows us to justify the performance program, but it also allows us to
give better descriptions of methods by making available intermediate levels of abstraction

10. Those are the variables in the head of the domain principle that were bound during plan finding
by the automatic program writer.

V. - *

-36-

* which were not previously available.

* 6.2.4 The Domain Rationale: Its Role in Explanation

The above example also illustrates the role that the domain rationale plays in
allowing us to provide better quality explanations. Programming in the top-down structured
programming methodology can be thought of as moving between levels of language. Nodes
higher in the development structure are stated in a higher level language than those that are

* lower down. However, as Figure. 14 illustrates, the correspondences (or "translations)
* between those language levels are implicit. In the example, the method [(check

sensitivities)) is at a higher level than the methods it calls which check individual -A
* sensitivities. Yet, the reasons why those sensitivities are sensitivities are not represented.

The domain rationale is used to indicate those correspondences. For example, the domain
rationale of the domain principle used for anticipating toxicity essentially defines what it
means for a finding to be a sensitizing factor in digitalis therapy. Paraphrasing the
description given in Figure 16, it is a finding that causes a dangerous deviation that is also
caused by increased digitalis. It should be noted that the current implementation should be
more explicit about exactly which terms in the higher level language are being redefined at a
lower level by the domain rationale. This limitation could impair the quality of explanations

* in more complex situations than were encountered in the Digitalis Advisor. For example, if
multiple terms were being re-defined, the current implementation would have trouble sorting
everything out. That limitation aside, the major point here is that the domain rationale allows
us to be much more explicit about how moves between levels of language are being made.
This, in turn, makes it possible to provide substantially better explanations.

* 6.2.5 Explaining Events

The interpreter of the performance program can be set up to leave behind a trace of
its execution. As It executes a procedure, it creates an event object, which records the call

and method used, the variable environments on entrance and exit, and the value returned ifj
* the procedure Is a functional subroutine. These events can be examined by the system after

execution is completed to produce an explanation of what the system did for a particular
patient. J

Once we have the mechanisms in place to explain methods it turns out to be quite

easy to explain events. Basically, It is done by having the system examine the event to be2
explained, generate a heading sentence using the call that caused the event, and then
generate phrase for the immediate subevents of the event. As when explaining methods,

the subevents, are filtered by their viewpoints. 2I

]
-37. '

The major changes in the explanation routines that have to be made are that a flag
has to be set so that verbs are generated in the past tense, and the generator for
conditionals has to be modified to indicate the choice taken. This is done by first having the AD
generator check that there was an action taken by the conditional and then having it
generate English for the predicate and the action taken. For example, the conditional does
not take an action if its predicate evaluated to false and there was no "else" clause, or if the " -

action taken was of a viewpoint that was filtered out. If no action was taken, or the action
taken is filtered out, the system just generates English for the predicate (for example, see ,
steps I and 2 in Figure 17.) Finally, the system generates a phrase indicating the final output
values of the routine.

6.2.6 Non-English Explanation

There are many situations in which English is not the only or best way to give an
explanation. Many times, explanations are much more effective when English text is
supplemented with figures, charts, drawings and so forth.

Fig. 17. Examples of Event Explanations

"How did the system anticipate digitalis toxicity?"

(describe-event (event i "eO002")J)

To anticipate digitalis toxicity:
1. The system determined that cardlomyopathy did not exist.
2. The system determined that decreased serum potassium did not exist.
3. Since the system determined that increased serum cakkm existed, the
system reduced the dose of digitalis due to increased serum calcium.

The adjusted dose of digitalis was set to 0.20.

"How did the system determine that serum calcium was increased?"
4 ,0

(describe-event [(event'i "e0016")])

Since serum caldum (13) was greater than the thresbold of increased serum calcium (11) the
system determined that Increased serum calcium existed.

-38-

Fig. 18. Describing Events with Arithmetic Expressions I
"How did you reduce the dose tor increased serum calcium?"

The dose after adjusting for increased serum calcium was set according to the
following formula:

D2 DI C

where:
C = the reduction constant for increased serum calcium (0.8)
DI = the dose before adjusting for increased serum calcium (0.25)
D2 = the dose after adjusting for increased serum calcium (0.20).

The dose of digitalis adjusted for the condition of the heart muscle, serum potassium and serum
calcium was set to 0.20.

A case in point is explaining mathematical formulas. Mathematical formulas
expressed in English are not only verbose; they are ambiguous as well [Swartout77a]. As a
small step in moving toward a larger investigation of non-English explanations, the XPLAIN
system describes arithmetic expressions using mathematical notation. This is done by
choosing shortened variable names for the variables and converting the prefix XLMS form
for arithmetic expressions to an infix form which is printed. Figures 18 and 19 show some .21
examples.

7. A Discussion of the Automatic Programming Approach to
Explanation

This section addresses several issues that arose while implementing the system.
Most of these deal with the interrelationships between the automatic programmer, the
performance program, and the explanations that can be produced.

7.1 Does Automatic Programming Affect the Performance Program?

We attempted to get the XPLAIN system to write procedures that captured the
intent of the corresponding sections of the original Digitalis Advisor as much as possible.
However, there were situations where we decided to adopt different strategies. Usually this
occurred because the attempt to find domain principles to generate the program forced us

39

Fig. 19. Describing Methods with Arithmetic Expressions

"How does the system combine the assessments of highly specific,
moderately specific, and non-specific findings of toxicity?"

The combined assessment of the highly specific findings of digitalis toxicity, the moderately specific

findings of digitalis toxicity and the non-specific findings of digitalis toxicity is set according to the
following formula:

C = FIAl + F2A2 + F3A3

where:
Al = the assessment of the highly specific findings of digitalis

toxicity
A2 = the assessment of the moderately specific findings of digitalis

toxicity
A3 = the assessment of the non-specific findings of digitalis toxicity
C = the combined assessment of the highly specific findings of digitalis

toxicity, the moderately specific findings of digitalis toxicity
and the non-specific findings of digitalis toxicity

F1 = the weighting factor of the highly specific findings of digitalis
toxicity (4)

F2 = the weighting factor of the moderately specific findings of
digitalis toxicity (2)

F3 = the weighting factor of the non-specific findings of digitalis
toxicity (1).

to look more closely at the methods we were adopting, and occasionally we discovered that
the original program was flawed or inconsistent.

For example, in the original Digitalis Advisor, myxedema" was considered as one

of the digitalis sensitivities (like increased calcium or decreased potassium). In creating the
domain model and domain principle to anticipate toxicity in the new system, we realized that
a problem existed because myxedema was not causally additive with the other sensitivities
and hence would not meet all the refinement constraints required by the domain principles"

in refining the program. To resolve the problem, we dug deeper into the medical literature
and discovered that myxedema should not really be considered a sensitivity at aill In fact,
myxedema reduces the excretion of digitalis through the kidneys and thus tends to make

11. Myxedema is a disease caused by decreased thyroid function. Signs of the disese include dry
skin, swellings around the lips and nose, mental deterloratoi, and a subnormal basal metabolic rate.

.* . * . * . * . * - .- V..

- 40-

digitalis accumulate in the body rather than making the patient more sensitive to digitalis.
Therefore, the appropriate way to handle myxedema is not as a sensitivity, but as a factor
which modifies the excretion rate in the pharmacokinetic model.

* One of the advantages of the automatic programming approach is that it forces the
user to think harder about the performance program and its implementation. Just as the
implementation of any theory on a computer forces one to work out the details and think
about the consistency of the theory, working out the implementation of the implementation
carries the process one step further and forces one to think that much harder about the
entire undertaking.

7.2 Is this Approach to Explanation Compatible with Others?

The approach to explanation espoused in this thesis is compatible with other
approaches such as using canned text or producing explanations by translating the
program code. It should be regarded as an extension of these earlier approaches rather
than a replacement for them. This is important because there may be times when it is not
feasible to get an automatic programmer to produce the code. The XPLAIN system allows
the user to hand code parts of the system and can generate the remainder automatically.
Those parts of the system that are hand-coded can be translated to English just like the
parts that are automatically generated. The current implementation of the XPLAIN System

* does not support canned-text explanations (mainly because they have not been needed) but
- . could easily be modified to do so.

7.3 Is Automatic Programming Too Hard?

One possible objection to the whole approach to explanation advocated here is that
it is just too difficult to get an automatic programmer to write the performance program.
When I first began this research, I thought that was the case. The original plan for
producing better explanations was to create structures detailing the development of the

*performance program, but these structures would be created by hand rather than
automatically. It was feared that automatic programming was just too hard. However, as the
research progressed, it became clear that If we had sufficiently powerful representations
available so that it could be said that in some sense explanations were being produced from
an understanding of the program, then actually writing the program in the first place would
not be much more difficult. I suspect this is true in general. It seems that the primary
difficulty In both explanation and automatic programming is a knowledge representation
problem, and that the kinds of knowledge to be represented in both cases are similar so that
a solution to one case makes the other much easier. Furthermore, if this conjecture is
correct, It implies that we are not likely to find easier approaches to explanation than the one

... S ---.--- -

.41-

presented here (if we require that our explanations be based on an understanding of the
program as opposed to, say, canned-text.)

7.4 Is a Top-down Approach Really Necessary?

The XPLAIN system can produce good justifications in part because it has access
to the refinement structure produced by the automatic programmer in a top-down fashion. *
A natural question to ask is whether a bottom-up approach might not work equally well. In
other words, one could envision a system that analyzed an existing program structure into
higher principles, and explained it at that level. This system would need to employ
knowledge structures much like the domain principles and domain model, but they would be
used in reverse to parse the existing performance program into a parse tree (which would
correspond to XPLAIN's refinement structure). 12 This approach is enticing: it seems that if
it can be made to work in general then any program can be explained whether or not it was
written with explanation in mind. While such an approach might be attractive in principle, I
feel there are several obstacles that make its implementation difficult. First, as was pointed
out earlier, the process of writing a program is a process that distills "how-to-do" something
out of a much larger body of knowledge. Given that, the analyzer will not be able to explain
a program without knowledge structures similar to the domain principles and domain model
used by XPLAIN, and furthermore, these structures will have to be similar in both size and
scope to those used by XPLAIN. While XPLAIN works deductively this recognizer would
have to work by induction and the possibility of ambiguity would exist. In the XPLAIN
system, a major effort involved figuring out how the domain principles and domain model
should be represented. Once they existed, it was relatively easy to get the program writer to
use them to write the performance program. Since both require similar knowledge
structures, and once they exist it is easy to synthesize the performance program, the
top-down approach would appear to have the edge.

7.5 Limitations and Extensions of the XPLAIN System

While the explanations presented in this paper provide an indication of the power of
the automatic programming approach to explanation, they do not exhaust its possibilities.
The current system can be extended in several areas:

12. See also [Clanceyl9] for a discussion of this approach.

4 - 42 *

7.5.1 What Can the Current Implementation Do?

The current domain model and domain principles contain enough knowledge to 0
generate all the examples within this paper. They can also produce additional examples,
although these are quite similar to those that appear here. There are three things that would -

* have to be done to complete the implementation of the Digitalis Advisor. First, it would be
necessary to implement routines to assess therapeutic improvement. These should not be
too difficult because they can be very similar to the routines that assess toxicity. Second, it -1
would be necessary to recapture from the old Digitalis Advisor domain principles to adjust

* the dose based on the therapeutic. and toxic assessments. Third, it would be necessary to
implement various utility functions for gathering data and the pharmacokinetic model of
digitalis excretion. While there would be a fair amount of programming involved, I do not

* foresee any major conceptual hurdles. Once this implementation was completed, the
- domain principles of that program could be used with different domain models to develop
* similar consulting programs (i.e. programs that offered advice about therapy with various
* drugs).

* 7.5.2 Improved Answer Generators

Additional answer generators could be employed to provide the user with: 1)
improved access to the domain model so that the domain model itself could be explained as

- well as its use in the development of the program; 2) improved explication of the decisions
* made by the automatic programmer; 3) an ability to assess the significance of the program's
* recommendations.

* 1) Currently, the explanation routines make use of the domain model to justify a piece of
* program structure. It would be nice (particularly in a teaching environment) to have answer

generators which focused on the domain model so that a user could enhance his
understanding of the domain. In addition, it would not be particularly difficult to
cross-reference the domain model with the refinement structure to indicate where the
domain knowledge was used in the program. This would allow the system to answer
questions such as, "How does the system take increased calcium into account?" The
answer would be produced by finding those places in the system where the concept
increased calcium was used 13 and then displaying the appropriate pieces of code (see also
[Swartout77a]).

2) The current system has no ability to explain domain or refinement constraints. In part,

1.For example, increased calcium could be a match for a pattern variable used in a domain
rationale or as an argument to a domain constraint.

.43. .
*this is because the implementation of the XPLAIN system has concentrated on offering

explanations to medical users and it was felt that the constraints have more of a computerI
than medical viewpoint. But that is not entirely correct. Recall that when the system was *0

refining the split-join associated with anticipating toxicity it was necessary to assure that all
* the factors involved were at least causally additive. Whether or not the factors are additive is

a question that clearly involves medical knowledge, and it is something which should be
explainable to a medical audience in terms of its medical significance.

3) The system should also be able to explain the advice of the performance program in terms
* of its medical significance. For example, the advisor might conclude that no digitalis should

be given for 3 hours and then 0.25 mg should be administered. If the advice was given at
11pm, the patient would have to be awakened at two in the morning if the attending

* physician wished to follow the program's recommendation to the letter. However, since
* digitalis has a relatively long half-life, the precise timing of doses (within a few hours) is not

thought to be terribly important. In this case, the inconvenience and discomfort involved in
* waking the patient would probably dictate that the patient receive the drug at an earlier time.

While we could program the system so that it does not give drugs during sleeping hours, it
seems that that approach might eventually result in a program which knew substantially
more about hospital procedure than about digitalis therapy. A better approach might be one
where the system could indicate to the user the importance of its recommendations. For
example, in this case, the system could mention that a variation of a few hours in drug
administration would not be significant.

7.5.3 Telling White Lies

Currently, XPLAIN can describe what a performance program it creates does and
why it does it at various levels of abstraction by descnibing the methods it uses, the
refinement structure, the domain principles and the domain model. While it can leave out
details based on viewpoint or by using a higher abstraction, It does not deliberately distort its
explanations. Yet sometimes human teachers do exaL;ly that to make their explanations
easier to understand. That is, to introduce a new concept, a teacher may deliberately
over-simplify things and give an explanation which is in fact wrong but easier to understand
and close enough to the truth that the student can easily understand the correct view later
once he understands the approximation the teacher presents. These "white lies" represent
a kind of explanation that cannot be delivered by systems that just present (at some level of
detail) the reasoning paths followed by a problem solver (or automatic programmer).

But where do white lies come from? Sometimes a teacher may create them from
scratch, but often they are just earlier versions of what was thought at the time to be the
complete, final version of the theory, program or whatever. For example, the old Digitalis

* Advisor used to adjust the dose for sensitivities using a simple threshold model: if the level of

q .44.0

serum potassium (say) was below a certain threshold. the dose was reduced by a fixed
percentage. The most recent version of the Digitalis Advisor makes a sliding reduction

8 depending on how depressed the serum potassium is. Since the threshold model is more
understandable, when describing the Digitalis Advisor, one might present it first to give the
user a general idea of what happens before describing the sliding reduction that is actually
used.

.0
It seems that it could be very helpful in providing better explanations if the XPLAIN

system adopted a similar technique. That is, suppose that someone discovered that a
domain principle had to be modified to give better results. Currently, he would make the
modification and re-run the program writer to get a new performance program which
incorporated the change. The old version of the domain principle and performance programNM
would be discarded. What we are suggesting here is that rather than throwing away old

* versions of the performance program, it might be useful if the program writer kept them
* around and noted the differences between the refinement of the old program and the new

and where these differences arose (i.e. new principle, different domain model, etc.). The
explanation routines could then use the old program fragments as a source for white lies
and after the old version was understood, the difference links could be used to indicate how

* things really worked. Additionally, recording the changes between versions would allow the
system to otter effective explanations about those changes to a user who had not used the -

system for a while. To continue the example above, suppose a user who had last used the
performance program when it made reductions by a threshold used the new version with

* sliding reductions. If his patient were only slightly hypokalemic, he might wonder why the
reduction for decreased potassium was much smaller than before. The system could justify
the difference only if it has access to the differences between the two versions and the
reasons for those differences. Of course, the system would have to be careful. Sometimes
new program fragments would result from new insights into the problem, leading to a better
and simpler program. In that case, referring to the old program would gain nothing for------
expository purposes, although it could still be used for explaining differences between the
old and new versions.

* 7.5.4 Telling the User What He Wants to Know

While the current system has a limited ability to tailor the explanation to the
interests of the user and to model what has been explained to him, the quality of the
explanations could be substantially improved if the results of other research efforts could be

* integrated with the XPLAIN system. These include: 1) having the system model what it
believes the user knows [Geneserethl9j, 2) developing tutorial strategies giving the system
a more global view of its interaction with the user and allowing it to take part in directing it
[Carr77a, Clancey79], 3) on the opposite end of the scale, improving the low level English .0
generators so they are more firmly grounded on linguistic principles [McDonaid8O, Mann8O)

L......

-45 -

and 4) improving the system's understanding of its own explanatory capabilities and the
user's question so that it can reformulate the user's request into what it can deliver
[Mark8O].

8. A Summary of Major Points

First, we have argued that to be acceptable, consultant programs must be able to

explain what they do and why. Second, we have described the various ways that traditional
approaches fail to provide adequate explanations and justifications. Major failings include:
1) the inability of such approaches to justify what the system is doing because the
knowledge required to produce justifications is not represented within the system, and 2) a
lack of distinction between steps required just to get the computer-based implementation to
work, and those that are motivated by the application domain. Third, we have outlined an
approach which captures the knowledge necessary to improve explanations. This involves
using an automatic programmer to generate the performance program. As the program is
generated, a refinement structure is created which gives the explanation routines access to
decisions made during the creation of the program. The improvement in explanatory
capabilities that is achieved is due more to the availability of this refinement structure than to
the use of more sophisticated English generation functions.

9. Acknowledgments

I would like to thank the members of the MIT Clinical Decision Making Group,
particularly Ramesh Patil, Ken Church, Bill Long, Harold Goldberger, and especially my
advisor, Peter Szolovits, for insightful comments and suggestions that greatly aided this
research. I would also like to thank Bob Balzer, Lee Erman, Mike Fehling, Jack Mostow and
Norm Sondheimer all of ISI, for their suggestions which facilitated the writing of this paper.

10. References

[Barstow77] Barstow, D., "A Knowledge-Based System for Automatic Program
Construction," Proceedings of the Fifth International Conference on Artificial Intelligence,
1977

[Balzer77] Balzer, R., Goldman, N., Wile, D., "Informality in Program Specifications,"
Proceedings of the Fifth International Conference on Artificial Intelligence, 1977

-*-- k . .. t.A . -.

-46 -

[Brown75] Brown, J.S., Burton, R.R., ZydbelF.. "Multiple representations of knowledge for
tutorial reasoning," in Representation and Understanding D.G. Bobrow and A. Collins
(eds) Academic Press, New York, 1975

[Carr77a] Carr, B. and Goldstein, I.P., "Overlays: a Theory of Modelling for Computer Aided
Instruction," MIT Al Laboratory Memo 406, February 1977.

[Carr77b] Carr, B., "Wusor I1: A Computer Aided Instruction Program with Student Modelling
Capabilities," MIT Artificial Intelligence Laboratory Memo 417, May 1977

[Clancey79] Clancey, W.J., "Transfer of Rule-based Expertise Through a Tutorial Dialogue",
Stanford University, Department of Computer Science, STAN-CS-79-769. 1979

[Clancey8l] Clancey, W.J., "Neomycin: Reconfiguring a Rule-based Expert System for
Application to Teaching," Proceedings of the Seventh International Conference on Artificial
Intelligence, 1981

[Davis76] Davis. R., "Applications of Meta Level Knowledge to the Construction,
Maintenance and Use of Large Knowledge Bases," PhD thesis, Stanford Artificial
Intelligence Laboratory Memo 283(1976).

[Genesereth79] Genesereth, M.R., "The Role of Plans in Automated Consultation,"
Proceedings of the Sixth International Conference on Artificial Intelligence, 1979

[Gorry78] Gorry, G. A., Silverman, H., and Pauker, S. G., Capturing Clinical Expertise: A
Computer Program that Considers Clinical Responses to Digitalis, American Journal of
Medicine 64:452-460, (March 1978).

[Green79] Green, C.C., Gabriel, R.P., Kant, E., Kedzierski, B.I., McCune, B.P., Phillips, J.V.,
Tappel, S.T., Westfold, S.J., "Results in Knowledge Based Program Synthesis,"
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, 1979

[Hawkinson80] Hawkinson, L.B., "XLMS: A Linguistic Memory System," MIT Laboratory for
Computer Science TM-173, 1980

[Jelliffe70] Jelliffe R.W., Buell J., Kalaba R. et al, "A Computer Program for Digitalis Dosage
Regimens," Math. Biosci. 9:179-193,1970

[Jelliffe72] Jelliffe R.W., Buell J, Kalaba R, "Reduction of digitalis toxicity by
computer-assisted glycoside dosage regimens," Ann. Intern. Med. 77:891.906,1972

[Kastner82] Kastner, J. K., Weiss, S.M., Kulikowski, C.A, "Treatment Selection and
Explanation in Expert Medical Consultation Application to a Model of Ocular Herpes
Simplex," Proceedings of MEDCOMP82, p.420-427, 1982

[Long77] Long, W.J., "A Program Writer," MIT Laboratory for Computer Science, TR-187,
1977

[MannSO] Mann, W.C., Moore, J.A., "Computer as Author-Results and Prospects," USC
Information Sciences Institute ISI/RR-79-82, 1980

[Manna77] Manna, Z., Waldinger, R., "The Automatic Synthesis of Systems of Recursive
Programs," Proceedings of the Fifth International Conference on Artificial Intelligence, 1977

...............

-47.

[MarkO] Mark, W., "Rule-Based Inference in Large Knowledge Bases," Proceedings of the

First Annual National Conference on Artificial Intelligence, 1980

[Martin79] Martin, W.A., "Roles, Co-Descriptors and the Formal Representation of
Quantified English Expressions," MIT Laboratory for Computer Science TM-139, September
1979

[McDonald8O] McDonald. D.D., "Natural Language Production as a Process of
Decision-making Under Constraints." MIT PhD Thesis, 1980

[Minsky75] Minsky, M., "A Framework for Representing Knowledge," in The Psychology of
Computer Vision, P.H. Winston (ed), McGraw-Hill, 1975

[Peck73] Peck C.C., Sheiner L.B. et al: "Computer-assisted Digoxin Therapy," New England
Journal of Medicine 289:441-446,1973.

[Pauker76] Pauker, S.G., Gorry, G.A., Kassirer, J.P., and Schwartz, W.B., "Toward the
Simulation of Clinical Cognition: Taking a Present Illness by Computer," The American
Journal of Medicine 60:981-995 (June 1976).

[Pople77] Pople, H.E. Jr., "The Formation of Composite Hypotheses in Diagnostic Problem
Solving: an Exercise in Synthetic Reasoning," Proceedings of the Fifth International Joint
Conference on Artificial Intelligence (1977).

[Sheiner72] Sheiner L.B., Rosenberg B., Melmon K., "Modelling of Individual
Pharmacokinetics for Computer-aided Drug Dosage," Computers and Biomedical Research
5:441-459,1972

-- [Shortliffe76] Shortliffe, E.H., Computer Based Medical Consultations: MYCIN, Elsevier
.° North Holland Inc. (1976)

[Silverman75] Silverman, H., "A Digitalis Therapy Advisor," MIT Project MAC TR-143, 1975

[Swartout77a] Swartout, W.R., "A Digitalis Therapy Advisor with Explanation.,," MIT
Laboratory for Computer Science TR-176, February 1977

[Swartout77b] Swartout, W.R., "A Digitalis Therapy Advisor with Explanations,"
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, August

977
rSwartout81] Swartout, W.R., "Producing Explanations and Justifications of Expert

,;onsulting Systems," MIT Laboratory for Computer Science Technical Report TR-251,
January 1981.

[Swartout82] Swartout, W.R., Balzer, R., "On the Inevitable Intertwining of Specification And
Implementation" Communications of the ACM 25:7 438-439 (1982)

LWeiss78] Weiss, S.M., Kulikowski, C.A., Amarel. S., Safir, A., "A Model-Based Method for
.,omputer-Aided Medical Decision-Making," Artificial Intelligence, 11:1,2 (1978)

[Winograd7l] Winograd, T., "A Computer Program for Understanding Natural Language,
MIT Artificial Intelligence Laboratu.y TR- 17, 1971

1 04

7..r

, 9k

~i4~ ze~ tA4

